Department of Chemistry

On the Delayed Post-Fracture Souring of Shale Gas Production

Payman Pirzadeh, Shaunak Raval and Robert A. Marriott November 6th, 2014

UNIVERSITY OF CALGARY

21st GPAC-PJVA Joint Annual Conference

Calgary, Alberta

What are the Sources of H₂S in a Conventional Gas Reservoirs?

Sulfur combined in living precursor material (natural amino acids)

Global Shale Gas and Shale Oil

	150°W	120°W	90°W	60°W	30°W	0°	30°E	60°E	90°E	120°E	150°E
	ARI report co	overage		100 B	Đ	2011	Report	Sal.	3	2013 Re	eport
	Number of co	untries	A. g		gen gr	5	32				41
60°N	Number of ba	sins	43	N.	J.		48				95
-	Number of for	mations	N. A.	A		100	69	and the	har		137
	Technically r	ecovera	ble reso	ources, i	ncluding	J U.S.			S.		1 from
30°N	Shale gas (tril	llion cubi	c feet)				6,622				7,299
-	Shale / tight o	il (billion	barrels)			E.	32	F.	6 M		345
ô	Note: The 2011 repo completeness.	ort did not ind	clude shale o	oil; however,	the Annual L	Energy Outlo	ook 2011 did (for only the L	J.S.) and is	included here	e for
S 30°S	Legend Assessed basins Assessed basins Eia	s with resource s without resour rmation	estimate rce estimate vanced Resources iternational, Inc.				·	- N			

U.S. energy Information Administriation, Technically Recoverable Shale Oil and Shale Gas Resources (2013).

North American Shale Plays

4

shale gases are sweet and do not need to be treated, ..., Although not highly sour in the traditional sense of having high H_2S content, and with considerable variation from play to play and even from well to well within the same play, shale gas often contains tens or hundreds of parts per million of H_2S , with wide variability in CO_2 "

Weiland, R. H., Hatcher, N. A., Hydrocarbon Processing, 91, 41-48 (2012) 7~80°C

• There have been informal communications regarding production of shale gas that starts sweet, but **goes sour after a few months**

*****What can potentially cause a sweet reservoir go sour over time?

What may delay surfacing the H₂S in an initially sour reservoir?

 Unpredicted souring may result in efficiency issues in processing units and affect the economy of production (metallurgy of construction and treatment of the products)

- Aquathermolysis of Kerogen (non-native H₂S)
 - Why doesn't the H₂S drop-off after flowback?
 - Unless we heated the reservoir (similar to SAGD), why was there no initial H_2S ?
 - maturity?
- Late desorption of native H₂S
 - Why does initial testing show no H₂S?
 - Shouldn't the H₂S level continue to rise?
- Bacterial reduction of sulfate (non-native)
 - Would this occur for T > 150°C and after biocide was used?
 - Where did the sulfate come from (HFF)?
- Ingress from another sour zone
 - Why wouldn't the H₂S continue to rise?
- Thermal sulfate reduction
 - May be the source of native H₂S, but is a geologically slow reaction, especially with mature gas
 - High reaction rate requires larger hydrocarbons.
- Delayed production of H₂S due to *in situ* scrubbing with chemical additives

Possible Scenarios

- It appears that hydraulic fracturing fluid may have introduced new species into the shale well
- Two scenarios are conceivable:
 - The shale reservoir is completely sweet and goes sour by time
 - The shale reservoir was sour, and hydraulic fracturing fluid may make the well appear sweet

Experimental

- Reactants are loaded at room temperature.
- N₂ pressure is added through a HP sampling manifold.
- Vessel is thermostated for t = 40, 132 or 168 hours before quenching.
- The sample is opened to the sampling manifold and blown down to GC (PFPD, FID, TCD).
- Liquids are removed for GC/MS, IC, ICP and pH.

6 cm³ Titanium plug

	Chemical Disclosure Registry				
Additive Type	Chemical	Purpose			
surfactant	sodium dodecyl sulfate	friction reduction, emulsion inhibition			
surfactant	isopropanol, ethanol, methanol, 2-butosyethanol	formulation stabilizer, winterizer			
biocide	gluteraldehyde, ammonium chloride, hydroxymethyl phosphonium sulfate	eliminate bacteria			
gel breaker	ammonium persulfate, magnesium peroxide, magnesium oxide	delays breakdown of gel polymer until after propant is deposited			
oxygen scavenger	ammonium bisulfate	removes oxygen			
scale inhibitor	ethylene glycol	prevents deposits within wellbore and pipelines			
friction reducer	polyacrylamide, mineral oils, SDS	interfacial friction reduction (slick water)			
Gel	Guar gum, hydroxyethyl cellulose	viscosity modification for carrying propant			
iron controller	Citric acid	chelating of metal oxides			
pH adjusting agent	sodium or potassium carbonate	maintains the effectiveness of some compounds, such as crosslinkers			
crosslinker	borate salts	viscosity modification for carrying propant (high-temperature)			
propant	silica and quartz sand	props fractures open for gas migration after fracture fluid has been recovered			
diluted acid	hydrochloric acid	mineral dissolution for some acid stimulation			

- Sodium dodecyl sulfate (SDS) is also known <u>sodium lauryl</u> <u>sulfate (SLS)</u>
- Common surfactant in chemical industry and biology
- It hydrolyses into 1-dodecanol and bisulfate anion at room temperature:

$$H_2O + C_{12}H_{25}SO_4(ads) + Na^+ \longrightarrow C_{12}H_{25}OH + HSO_4 + Na^+$$

• Will 1-dodecanol participate in a TSR reaction?

TSR Reaction of 1-dodecanol in 40 hours

				Initial	Final			
Oxidant	<i>т</i> / °C	<i>p /</i> MPa ^a	t / hrs	10 ³ ∙SO ₄ ²⁻ / mol	10 ³ •SO ₄ ²⁻ / mol	10⁵∙H₂S / mol	10 ⁵ •CO ₂ / mol	% recovery ^b
MgSO ₄ (aq)	300	6.5	40	5.06	3.60	0.47	0.30	71
MgSO ₄ (aq)	300	15.7	40	5.06	3.95	0.52	0.75	78
NaHSO ₄ (aq)	200	36.9	40	4.68	4.01	3.0	0.18	86
H ₂ SO ₄ (aq)	200	71.2	40	4.68		121	0.090	26
$H_2SO_4(aq)$	200	36.9	40	4.68	0.37	136	0.30	65
(NH ₄) ₂ S ₂ O ₈	200	20.9	40	4.98	4.73	0.0006	1.4	95

(a)The total pressure at the reaction temperature was calculated based on the measured pressure and temperature upon opening the vessel (see methods); (b) small quantities of $S^{2-}(aq)$, $SO_3^{2-}(aq)$ and $S_2O_3^{2-}(aq)$ were found, but omitted from the table for clarity. '% recovery' is the fraction of sulfur species accounted for after all analyses, *i.e.*, the % sulfur mass balance.

Hydrolysis + TSR Reaction of SLS

			Initial	Final					
T / °C		t	10 ³ •SLS	10 ³ •SO ₄ ²⁻	10 ⁵ •H ₂ S	10 ⁵ •CO ₂	10 ³ ● <i>k</i>	%	
170	<i>p</i> / IVIPa	/hrs	/mol	/mol	/mol	/mol	/ h⁻¹	recovery	
300	15.1	40	6.32	2.95	69	90	5.08	60	
250	20.9	40	6.38	4.31	16	4.9	1.92	71	
200	26.2	40	6.34	5.77	0.38	3.8	0.17	91	
200	17.0	40	6.35	5.32	0.20	3.4	0.05	84	
200	27.6	40	6.35	5.51	1.1	5.2	0.33	87	
150	28.7	40	6.35	4.92	0.084	4.0	0.02	77	
150	37.2	40	6.35	4.76	1.7	3.9	0.26	75	
150	16.7	40	6.33	4.69	0.13	3.6	0.02	74	
200	18.5	132	4.92	4.28	0.71	3.7		87	
200	19.0	132	3.84	3.48	0.45	2.4		91	
200	19.6	132	2.76	2.53	0.18	1.8		92	
200	18.4	132	1.68	1.61	0.12	1.1		96	
200	16.2	132	0.634	0.51	0.009	0.61		81	
200	16.9	132	0.634	0.53	0.024	0.50		186	

SLS Reduction Kinetics for $T \ge 150^{\circ}$ C

- SLS was found to undergo hydrolysis and thermal sulfate reduction to form H₂S.
- H₂S generation *via* SLS degradation was more rapid than expected from normal reservoir hydrocarbons.

<i>T /</i> °C	t _{1/2} / days
300	4
250	14
200	85
150	2000 (5.6 years)

- In a initially sweet shale reservoir, SLS and other fracture fluid additives can sour the production via TSR.
- The degree to which SLS participates in souring profile (*i.e.* its kinetics) requires further work, which incorporate minerals and additives

pubs.acs.org/EF

Hydraulic Fracturing Additives and the Delayed Onset of Hydrogen Sulfide in Shale Gas

Payman Pirzadeh, Kevin L. Lesage, and Robert A. Marriott*

Department of Chemistry, University of Calgary, Calgary, Alberta, Canada

Supporting Information

dx.doi.org/10.1021/ef501059k| Energy Fuels 2014, 28, 4993 - 5001

Scenario (II): Starting from a Sour Reservoir Delayed Appearance of H₂S at Surface

Role of H₂S: Experimental results without/with initial sulfide

Scenario (II):Starting From a Sour Reservoir Delayed Appearance of H₂S at Surface

A Simplified Mechanism for SDS degradation, scavenging H_2S and re-release of H_2S

 $H_2O + C_{12}H_{25}SO_4^{-}(ads) + Na^+ \longrightarrow C_{12}H_{25}OH + HSO_4^{-} + Na^+$ Frac / post flowback

$$HSO_4^- + 3H_2S + H^+ = 4S^\circ + 4H_2O$$
 Frac / post flowback

$$3S^{\circ} + C_{12}H_{25}OH + 2H_2O \longrightarrow 3H_2S + CO_2 + C_{11}H_{23}OH$$
 Slow

$$S^{\circ} + \frac{1}{3}C_{11}H_{23}OH + \frac{2}{3}H_{2}O \longrightarrow H_{2}S + \frac{1}{3}CO_{2} + \frac{1}{3}C_{10}H_{21}OH$$
 Slow

 $Na^+ + CO_2 + H_2O \implies NaHCO_3 + H^+$

 $NaC_{12}H_{25}SO_4 + \frac{2}{3}H_2O \longrightarrow NaHCO_3 + H_2S + \frac{1}{3}CO_2 + \frac{2}{3}C_{11}H_{23}OH + \frac{1}{3}C_{10}H_{21}OH$

Fraction of H₂S in production fluid

- In a sweet reservoir, the aqueous additives of hydraulic fracturing fluid can undergo TSR reactions under hydrothermal conditions
- In a sour shale reservoir, the fracturing fluid may scrub the H₂S and result in false negative test
- The scrubbed H₂S cab be re-released later during production
- Formation of thiols and acid-attack corrosions may be observed

Acknowledgment & Contacts

FOR INNOVATION

FONDATION CANADIENT POUR L'INNOVATION

Payman Pirzadeh E-mail: ppirzade@ucalgary.ca Tel: +1-403-220-3146

Robert A. Marriott E-mail: rob.marriott@ucalgary.ca Tel: +1-403-220-3144