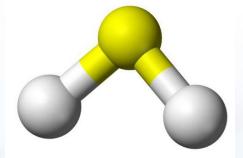


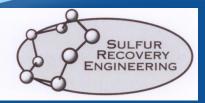
+0 (CH

Who We Are

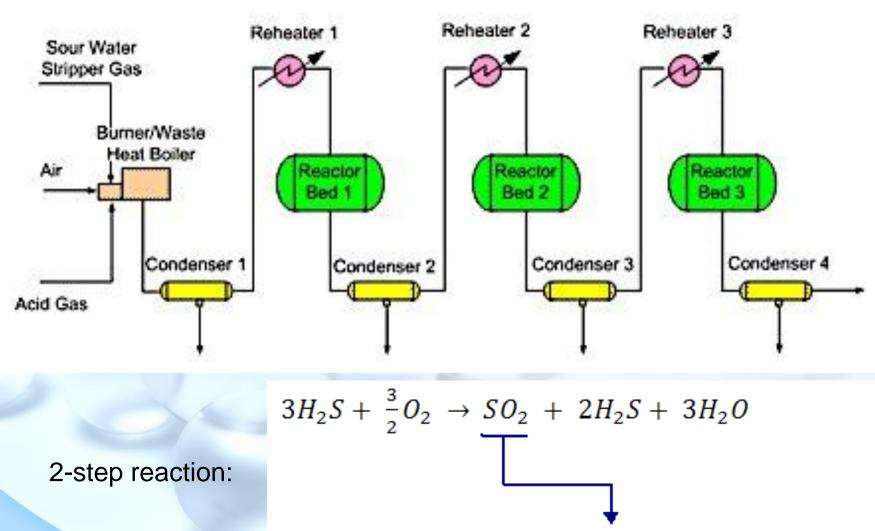
- Sulfur Recovery Engineering
 - Established 1998

SRU Reliability, Performance and Protection


- Provide in-field SRU consulting around the world
- Virtual Materials Group VMG Sim[®]
 - Uses years of accumulated SRE field data
 - Accurately models and predicts process
 - Used for capacity evaluations, performance evaluations and dynamic process modeling

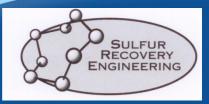


H₂S content decline: "What do we do next?"


- Many gas processors in western Canada are facing low and diminishing H₂S content
- Dual challenge, must address both:
 - Reducing acid gas quality (less H₂S)
 - Stricter emissions requirements

How do we maintain sulfur recovery?

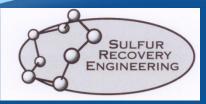
Sulfur Recovery Unit (SRU)


 $2H_2S + SO_2 \rightarrow S + 3H_2O$

Main Issues

Operating Sulfur Recovery Unit (SRU) is more difficult with less
 H₂S

• Less H_2S means less fuel and more CO_2 – 'double blow' to reaction furnace


More CO₂ also means more COS formation -> increased loss

Issues (cont'd)

Equipment becomes over-sized as sulfur production decreases:

- Initial design based on specific H₂S feed content
- •Valves operate well only within ~30 to 80% opening.
- Partial pressures decline in catalytic beds
- Control system requires assessment / upgrade

The Reaction Furnace: Heart of the Claus Unit

- Key issue: How to keep the furnace flame stable with lower
 H₂S content
- Very difficult to maintain a stable flame with less than 20% H_2S

Case Study 1: Gas processor in NW Canada

- Worried about reduction from 50% to 20% H_2S , how to operate, meet regulations?
- Thought split-flow but too much methanol in feed gas!

RECOMMENDED:

- Thought of co-firing retrofit with natural gas
- Or oxygen enrichment >28%
- Both promote BTEX and Methanol destruction

Case Study 2: Gas Processing Plant in NW Canada

- ~3% H₂S content in acid gas- and declining
- Currently utilize a <u>Sulfur Recycle system</u>
- Recent tasks completed
 - Combustion control system upgrade (essential for fluctuating and diminishing acid gas) (maintain H₂S:SO₂ ratio)
 - Furnace upgrades to adopt to lower H₂S concentration

Reaction Furnace Solutions

Configuration	Good Between 30-40% H ₂ S	Good Between 10-30% H ₂ S	Good Below 10% H ₂ S	Continuous Operating Cost	Promotes contaminant destruction
Fuel Gas Co- Fire	\checkmark		\checkmark		
Oxygen Enrichment					
Acid Gas Preheat (>200 °C)					
Split-Flow		\checkmark			
SelectOx		\checkmark			
Sulfur Recycle			\checkmark		

Many Factors to Consider...

- Your province or state's regulations / allowable SO₂ emissions
- Required sulfur recovery efficiency
- Presence of Contaminants (BTEX, NH₃, Methanol etc.)
- Ease of installation of additional equipment
- Additional (continuous) operating costs of Fuel Gas, oxygen etc.

Fuel Gas Co-Firing: In-Detail

• Pros

- Easily achieve operating temperature of 1200+ deg C
- Versatile for varied H₂S content (as low as 4% H₂S seen)
- Most popular retrofit

• Cons

- Increases flow rate through unit <-> residence time decreases
- CS₂ production increases
- Producing greenhouse gas -> CO₂
- Burning natural gas product

Oxygen Enrichment: In Detail

Pros

- No added hydrocarbons (and resulting CS₂ formation)
- Increases unit's capacity

• Cons

- Expensive continuous operating cost
- Requires additional equipment to unit
- Can increase SO₂ emissions

SRE Services

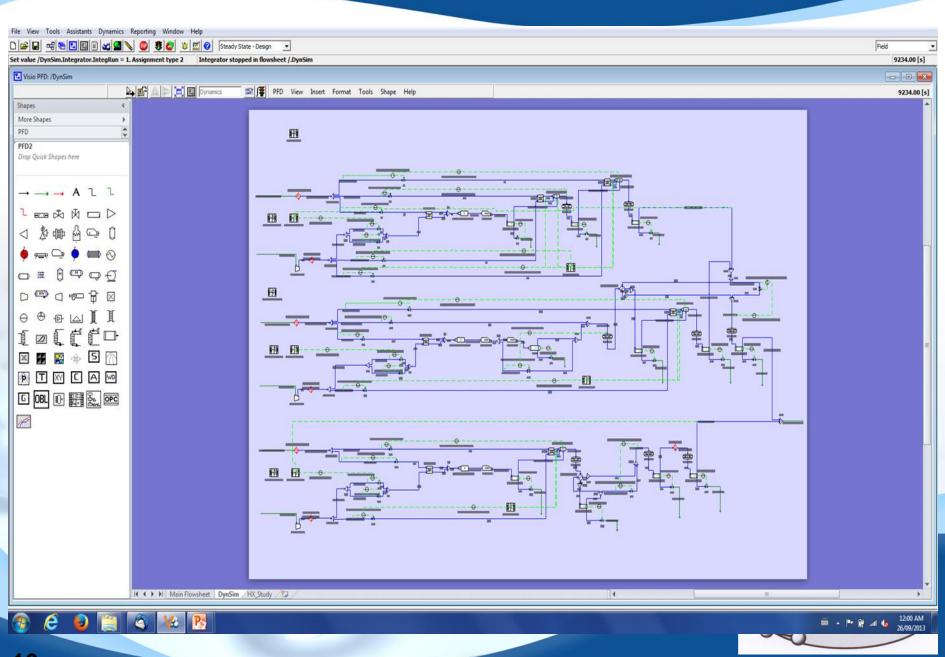
Performance evaluation

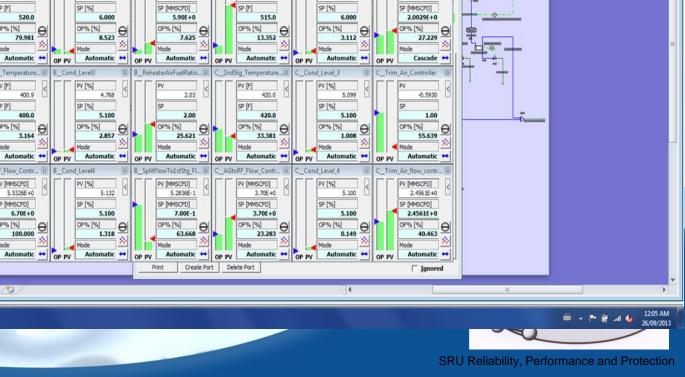
- Determine baseline performance at stable operation
- Pinpoint opportunities for optimization

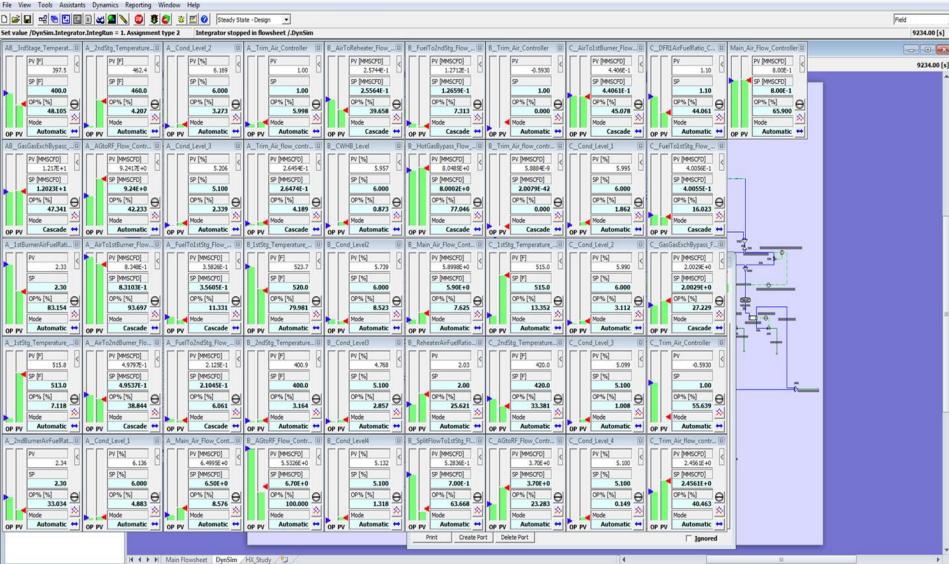
Capacity evaluation

- Evaluate individual process units
- Determine bottlenecks through capacity evaluation

Steady State and Dynamic Modeling using VMG Sim[®]


VMG Simulation®


DYNAMIC MODELLING


- Models hydraulics hydraulics of the process
- Evaluation of proposed modifications
- Control evaluation
- Training tool
- Monitoring tool

e

Conclusions

- Very common problem in NW Canada
- Many solutions available
- "One size doesn't fit all"

Any questions, please visit us. Enjoy the conference!

References:

- Sulfur Plant Configurations for Weird Acid Gases (K. LaRue et. al. 2013 Laurance

Reed Gas Conference 2013)

Sulfur Recovery Engineering Advanced Seminar

Thank You!

Sulfur Recovery Engineering #105, 2750 3rd Ave NE Calgary, Alberta, Canada T2A-2L5 <u>www.sulfurrecovery.com</u> (403) 226-5951

(CY