Stable Operating Limits in Amine Treating Units

Scott Alvis, Ralph Weiland & Nate Hatcher Optimized Gas Treating, Inc. Houston, TX

What Limits?

- Rich amine loading corrosion
 Maximum line velocities scouring
 Tower hydraulic limits packing & trays
 Operating T & P degradation
- ✓ Are there operational stability limits?

Operational Stability Limits

Can be created by minimizing OPEX Minimize solvent rates Minimize reboiler energy • Maximize gas flow Push plant as hard as you can > May end up going over a cliff • When and how badly?

Absorber Operation

System	CO ₂ Kinetics
Selective MDEA	Slow
MEA removing 5% CO ₂	Fast
Piperazine-activated MDEA on 20% CO ₂	Very Fast

Understanding Performance Through Simulated Tower Profiles

$MDEA - 2.5\% H_2S + 2.0\% CO_2$

Liquid Temperature (°F)

MDEA – 2.5% H₂S + 2.0% CO₂

MEA - 5.0% CO₂

MEA - 5.0% CO₂

Piperazine + MDEA – 20% CO₂

Solvent Rate (% Relative to Design Flow)

Piperazine + MDEA – 20% CO₂

Piperazine + MDEA – 20% CO₂

Piperazine + MDEA – 20% CO₂

- Normal Operation:
 - Fast CO_2 reaction \rightarrow Most CO_2 absorbed in bottom 2 m
 - Next 3 m polish
 - Upper 5 m superfluous
- Below Minimum Solvent Flow
 - Bottom 5 m superfluous
 - Next 3 m do most absorption
 - Top 2 m insufficient to polish, so...
 - CO₂ breaks through

Absorber Summary

- Breakthrough most sudden with fastest CO₂ kinetics
- Breakthrough sensitive to:
 - Solvent rate
 - Gas CO₂ content
 - Gas flow
- If all you have is ideal stages and efficiencies, you'll never see the train coming.
- With fast kinetics there is no warning; when you fall over the cliff it can be a long way to the bottom!

- Boilup rate usually fairly high
- Stainless metallurgy allows lower boilup rates
- Low reboiler duties typical in
 - Post-combustion carbon capture
 - Ammonia plant revamps from HotPot to PZ-MDEA
- > Over-boiled to under-boiled transition
 - Can be sudden
 - Lead to plant instability
 - Could be caused by
 - Throttling steam/hot oil flow
 - Changing solvent & acid gas loads on regenerator
 - Loss of cross-exchanger efficiency (e.g., fouling)

Effect of rich amine feed temperature

Effect of rich amine feed temperature

Effect of rich amine feed temperature

Reboiler Duty

Reboiler Duty

Summary

- Relative insensitivity of stripping to modest changes in reboiler duty until...
- Point of collapse of stripping steam flow
- But regenerators don't seem to go unstable, just harder to operate
- Absorbers with very fast CO₂ kinetics can become unstable if operated too close to minimum solvent rate
- Cannot operate in unstable region
- > Without tower profiles, analysis is impossible
- Minimum solvent rate marks the edge of an operational cliff. Don't fall over!

