Selective H₂S Removal

New promoter systems for amine solutions - A case study

Technologies & Applications

OASE® GAS TREATING EXCELLENCE	purple	Natural Gas, LNG
OASE® GAS TREATING EXCELLENCE	white	Ammonia, Syngas
OASE® GAS TREATING EXCELLENCE	yellow	Sulfur Selective Treatment
OASE® GAS TREATING EXCELLENCE	green	Biogas
OASE® GAS TREATING EXCELLENCE	blue	Flue Gas

Content

- Drivers for Selective H₂S Removal
- Acidification of MDEA
 - Basis of Design
 - pH Profiles
- Case 1: Tailgas Treatment Unit
 - Working at the Edge
- Case 2: Natural Gas Treatment Unit (Sales Gas)
 - Summer / Winter Case
- Summary

Drivers for selective H₂S Removal

- →H₂S / CO₂ Specifications in TreatedGas (e.g. caloric value in sales gas)
- → H₂S Concentration in Acid Off Gas (=Acid Gas Enrichment, e.g CLAUS feed gas)
- → Energy Considerations (OPEX)
- → Equipment Sizing (CAPEX)
- → Debottlenecking Measures

MDEA the standard amine for selective H₂S removal

Characteristics

Monoethanolamine

MEA

Aminodiethylhlycol

ADEG (= DGA)

Diethanolamine

DEOA

Secondary Amines

Primery Amines

Diisopropoanolamin

DIPOA

Methyldiethanolamine

MDEA

Tertiary Amines

Acidification of MDEA / Basis of Design

Acidification

Acidification / pH Profiles

MDEA

Acidified MDEA

Advanced Solvent

Case 1: Tailgas Treatment Unit working at the edge

Feedgas

H₂S 1.2 % / CO₂ 44 - 51 % / p ~16 psi, ~1.1 bara

Design Spec.

 $< 250 \text{ vppm H}_2\text{S}$

Design Spec. < 250 vppm H₂S

1st Revised Spec.

< 100 vppm H₂S

2nd Revised Spec.

< 50 vppm H₂S

?

MDEA
Design Duty

Acidified MDEA
Reduced Duty

Acidified MDEA

Design Duty

Advanced Solvent slightly reduced duty

Adaptation of circulation rate required

Design Spec. < 250 vppm H₂S

1st Revised Spec. < 100 vppm H₂S

2nd Revised Spec. < 50 vppm H₂S

?

Case 1: Tailgas Treatment Unit working at the edge

Design Spec. < 250 vppm H₂S

1st Revised Spec. < 100 vppm H₂S

2nd Revised Spec.
< 50 vppm H₂S

?

Acidification effective to a certain limit

Acidification may lead to high sensitivity on H₂S specification

Over-Acidification has a strong negative impact

Acidification requires adjustment of circulation rate

Advanced solvent overcomes negative impact on equilibrium

Natural Gas

Feedgas

Feedgas H₂S 4.0 % / CO₂ 10.2 % / p ~609 psi

Treated Gas Spec.

<5 vppm H₂S / <2v-% CO₂

Winter Case

Lean Temperature 113°F (45°C)

Circulation Rate 799 USgpm (182 m³/h)

 $H_2S 4 vppm / CO_2 1.9 v\%$ Treated Gas Spec.

Summer Case

132°F (55°C) Lean Temperature

905 USgpm (206 m³/h) Circulation Rate

Treated Gas Spec. H₂S 8 vppm / CO₂ 2.0 v%

Absorber Temperature Profile →

Case 2: Natural Gas Treatment Unit winter/summer case

Summer Case:

Countermeasures higher Orc. Rate higher Rebailer Duty Acidification

Summary

- Tailgas Treatment: tighter H₂S specifications required in future
- Natural Gas: adjustable CO₂ slip required for sales gas appl.
- Matching specification more severe at high amine temperature and low pressure
- "Acidification" is a common solution for selective H₂S removal
- Acidified amine systems are sensitive at severe conditions
- Advanced solvent technology overcomes constraints

Many Thanks for your Attention

Questions?

