Conversion of Sulfinol-D to MDEA at the Shell Canada Burnt Timber Facility

Jamie Grant Operations Engineer

April 27, 2007 GPAC O&M Conference

Introduction

- Shell Canada's Burnt Timber Facility is located 120 km northwest of Calgary, Alberta
- Plant 1 constructed in 1970
 - Capacity of 1830 e3m3/d (65 MMSCFD)
- Plant 2 constructed in 1976
 - Capacity of 2000 e3m3/d (71 MMSCFD)

Current Plant Configuration

Original Gas Treating Configuration Shell Canada E&P

- Hydrocarbon Content in Acid Gas
 - **■** Consumption of air
 - Produced large amounts of CS₂
 - Un-combusted BTX caused deactivation of 1st converter bed
- This resulted in 1st bed catalyst being changed every 6 to 9 months.
 - **■** Excessive operating costs
 - Lost Production

- High CO₂ Content in Acid Gas
 - Increases pressure drop therefore reducing blower capacity and plant capacity
 - Production of COS reducing sulphur recovery
 - Reduces reaction furnace flame temperature

- Change in feed gas composition
 - Burnt Timber Field: $H_2S = 10.2\%$ $CO_2 = 6.4\%$
 - Panther Field: $H_2S = 7\%$ $CO_2 = 11.5\%$

Component (mole %)	Year		
	2005	2020	
H_2S	10.1	8.1	
CO_2	8.0	10.2	
N_2	0.6	0.5	
C1	75.8	80.4	
C2	2.1	0.8	
C3	0.4	0.2	
i-C4	0.1	0.0	
n-C4	0.1	0.0	
i-C5	0.1	0.0	
n-C5	0.1	0.0	
C6	0.3	0.1	
C7+	3.3	1.2	

- Changing Feed Composition would result in:
 - Poor Acid Gas H₂S:CO₂ ratio
 - Higher acid gas HC content due to higher amine circulation ratios
- End Result = Lower Plant capacity and lower sulphur recovery

Benefits of Conversion to MDEA

- Slip CO₂ to sales improving acid gas H₂S:CO₂ ratio.
- Decrease HC co-absorption in the amine.
 - Decrease air requirements in SRU and increase capacity.
 - Increase heating value to sales gas.
 - Reduce flash gas volume.
- Circulation rate not impacted by H₂S:CO₂ ratio.
- Lower reboiler duty

Risks of Conversion to MDEA

- Reduced removal of trace sulphurs
 - Depending on raw gas trace sulphur content, may not be able to meet specification.
- Aqueous MDEA has a higher foaming tendency than Sulfinol which may lead to capacity constraints
- Decision was made to change amine to MDEA.
- Millenia Resource Consulting of Calgary was contracted to do the detailed Engineering design.

MDEA Conversion Modifications

Shell Canada E&P

Absorber Design

- Slip up to 4% CO₂ and less than 8 ppmv H₂S
- 2% CO₂ required when Plant 1 is shutdown

CO2 Concentration Profile - Year 2020

Absorber Design

H2S vs Number of trays

Shell Canada E&P

Absorber Design Shell Canada E&P

Carbon Filter

Inlet Filter Coalescer & Preheater

Construction

- Construction was one of the most challenging aspects of the project
- Equipment located on three skids
 - Gas/Gas Exchanger and Coalescer Skid
 - L/R Exchanger Skid
 - Flash Tank Skid
- Issues with the skids late and unfinished.

Construction

- Major work during shutdown was in the Absorber
 - Installation of three feed nozzles
 - Installation/modification of tray rings
 - Strip lining the bottom 10 m
 - **■** Lining the nozzles with stainless steel
- Absorber had to have a hydrogen bake out, continuous weld preheat, and stress relieving.

- First task was to clean the system
 - Absorber and regenerator were vacuumed.
 - Start-up suction strainers installed.
 - Vessels and piping were air freed and gross leak tested using N_2 .
 - Final leak check at operating pressure with fuel gas.

- Cleaning the system cont'd
 - System was charged with steam condensate.
 - Circulation was established with L/R exchangers by-passed.
 - Steam condensate temperature was raised to 60 deg C.
 - A degreasing solution was added (1% soda ash, 1% tri-sodium phosphate and 0.2% surfactant).

- Cleaning the system cont'd
 - The system was completely drained and then refilled with fresh steam condensate.
 - Circulation was then established for 3 hours or 3 full circulations.
 - The system was drained then charged with 50:50 MDEA/Water mixture.

- Start-up
 - Gas was introduced with no unexpected issues.
 - When L/R exchangers were placed in series, the Booster Pumps experienced cavitation.
 - The pumps were damaged and 3 day outage was necessary due to delivery of replacement parts.

- Start-up....Next Problem
 - Plugged Absorber Level Control Valve.
 - Valve was plugged with welding slag, bolts, and other debris.
 - This occurred three more times with the same result.
 - Installed a bypass LCV with different style trim.

- Start-up
 - Hang-ups were experienced in the regenerator due to excessive steaming
 - Placing L/R exchangers in series on the rich side solved this issue.
 - The L/R exchangers did experience some plugging.
 - **■** They were cleaned several times online.

Optimization and Current Operation

H2S and CO2 in Treated Gas versus Tray Location

- Inlet Raw Gas
 - \blacksquare Design = 1850 e3m3/d
 - Performance Test = max. 2050 e3m3/d
- Reboiler Steam demand
 - 25% less steam per volume of raw gas
- Flash Gases
 - Reduced from 30 to 2-4 e3m3/d

• Sulphur Plant Operation

Parameter	Sulfinol	MDEA	
Acid Gas H ₂ S	58%	Up to 70% H ₂ S	
Acid Gas HC Content	2.5% (CH ₄ eq.)	<1% (CH ₄ eq.)	
BTX in Acid Gas	> 2300 ppmv	400 – 500 ppmv	
CS ₂ to 1 st Converter	1.25%	0.23%	
COS & CS ₂ from Stack	130 & 200 ppmv	50 & 16 ppmv	
TRS (Total Reduced S)	600 ppmv	100 ppmv	
Sulphur Recovery	95%	96.9%	

• Trace Sulphur Removal

	Inlet Gas	% Removal		
		cos	RSH	
Design (MDEA)	117 mg S/m ³	28%	37%	
MDEA	112 mg S/m ³	26%	47%	
Sulfinol	112 mg S/m ³	85%	80%	

Total Sulphur in Sales = $59 \text{ mg S/m}^3 \text{ (spec = } 115)$

- Trace Sulphur Removal
 - Subsequent tests showed only 8% and 15% removal of COS and RSH with the inlet containing 199 mg S/m³.
 - Combined Sales contained = 141 mg S/m³
 - Inlet Trace Sulphur was high due to sulphur washes on a sulphur producing well.

Summary

- Conversion to MDEA was a success at Burnt Timber.
- System operates well with little foaming.
 - Inlet coalescer and carbon bed.
- MDEA was the correct solution to the problem at Brunt Timber.

