#### Corrosion Management Strategies for Optimal Service Life Joe Boivin Cormetrics Limited

# Agenda

- Failure Occurrence
- Proper System Design and Startup
- Cautionary Tale I
- Sound Management
  - Good production practices
  - Cost effective corrosion inhibition
  - Effective monitoring
- Cautionary Tale II
- Aging Systems
- Cautionary Tale III

#### Introduction

- Most pipeline failures caused by internal corrosion
- Improved QA in steel and pipe mills
- Improved construction practices
- Improved mitigation technologies
- Aging infrastructure
- More aggressive environments

#### Failures by Cause



Total number of releases 12 191

#### Steady Improvement



#### Metallurgical or Corrosion Failure ?

- Failures early in service life more likely to be materials related
- Later failures almost certainly corrosion unless service conditions change drastically
- SCC an amalgam of both

#### Primary Causes of Sour Gas Pipeline Failures

#### Corrosion

 Inadequate inhibition, inadequate solids removal, production of completion fluids to pipeline

#### Inadequate Design

 Failure to address mechanical and/or thermal stresses, improper anchoring, improper backfilling specification

#### Faulty Construction and Inspection

 Welding faults, high installed stresses, inadequate pipe support, backfilling, and inspection

#### Improper Operation

•Operating outside of design, no consideration for operational changes, inadequate records

# Failures of Sour Gas Pipelines



All sour gas pipeline incidents, 1991-2001 inclusive

247 failures total, of which:214 were leaks,21 were ruptures,12 were hits.

Internal Corrosion
 Damage by Others
 Weld Failure
 Overpressure
 Valve Failure

- External Corrosion
- Construction Damage
- Earth Movement
- Pipe Body Failure
- Other

## Failures in Sour Gas Pipelines



Age of Sour Gas Pipeline Failures, 1997 - 2001

#### Failures of Sour Gas Pipelines



323.9 x 9.4 mm pipe
323.9 x 17.1 mm riser
30% H2S, dehyd.
10 days service
SSC on pipe side
Small root bead flaw



#### Failures of Sour Gas Pipelines



323.9 x 9.4 mm pipe323.9 x 17.1mm riser30% H2S, dehyd.10 days serviceSSC on pipe sideSmall root bead flaw



#### Startup protocols

- Avoid Spent acid
- Methanol batching
- System Gas and Fluid Analysis
- Flow modelling and Risk Assessment
- Corrosion inhibitor selection
- Commissioning batch inhibition
- Corrosion monitoring system

### Failure in 8! days

| Factor                 |                 |
|------------------------|-----------------|
| Temperature            | 59              |
| Pressure               | 2528 kPa        |
| H2S                    | 17%             |
| CO2                    | 2.85%           |
| Failure corrosion rate | 175 mm per year |



### Factors Involved in Failure

- Acid used in wellbore cleanup entered flowline
- Solids
- Concern over flaring/rush to production
- Inadequate commissioning batch
- Indiscriminate use of methanol
- Insufficient continuous corrosion inhibitor

# **Good Production Practices**

- Pipeline Operating Manual
- Pipeline Integrity Manual
- Chemical application procedure
- Pigging procedures
- Hydrate control (Methanol, Line heat)
- Well fluids control after workovers
- Management of Change

# Chemical Application – Corrosion Inhibitors

- Product effective and compatible with system
- Clean system
- Management of change
- Continuous added at effective concentration
- No interruptions
- Batch protocols adhered to
- Pitting damage is forever

# Hydrate control with Methanol

- Extremely damaging to inhibitor films
- Introduces oxygen
- Damages protective sulfide films
- Condenses with water
- Retains acid gases
- Methanol use only inhibited product

#### Self Excavated Failure



#### Self Excavated Failure

- sour gas stream from a compressor
- rich in hydrocarbons and has a CO<sub>2</sub> of 4.8 % and 1.4% H<sub>2</sub>S.
- discharge 5200 kPa
- exit temperature of about 35 °C.
- Iaminar flow with long water transit times
- water and condensate volume of about 0.6
   m<sup>3</sup> per day.
- methanol is injected at the compressor discharge for hydrate control.

#### **Before Cleaning**



#### After Cleaning



### What Happened?

- Failure caused by CO<sub>2</sub> attack
- Wet gas cooled rapidly after compressor discharge
- Water drops condense in the top quadrant of the pipe
- Water pH well below 4
- Corrosion rate of 100 mpy based on deWaard Milliams model.
- Hydrocarbon condensing from gas stream and creating a layer in the bottom.
- Once the water droplets reach the condensate layer, they will fall to the bottom of the line without creating any further corrosion to the walls which are now hydrocarbon wetted.

#### Aging Comparison

| People                                  | Pipelines |
|-----------------------------------------|-----------|
| Reliability Issues                      | ۷         |
| Chemicals needed for continued function | ۷         |
| More frequent Inspections required      | ۷         |
| Unexpected Failures                     | ٧         |
| Paying for Past Sins                    | ۷         |

#### Ghosts from the Past

- ▶ 40 e<sup>3</sup>m<sup>3</sup> per day of gas (21% H<sub>2</sub>S, 2% CO<sub>2</sub>)
- ▶ 50 m<sup>3</sup> of condensate
- > 20 m<sup>3</sup> per day of produced water (50K TDS)
- Pressure 1400 kPa
- Temperature 27 °C.
- Laminar flow
- Batch corrosion inhibitor
- 5 L/d continuous corrosion inhibitor







#### **Failure Pits**







#### Shut in /Water Volume Increases



Gas per Day ———H2O per day

## Conclusions

- Poor shut in protocols, brine remained in the system
- Batch protocols-poor inhibitor coverage at onset due to pig launch procedures
- Poor management of change –increases in water production not matched by inhibitor adjustments

# **Aging Systems**

- Pay attention to changes in production
- Limit or mitigate shut in time
- Review corrosion inhibitor programs
- Monitor changes in water chemistry and microbiology
- Monitor corrosion and inspect critical lines

#### Review

- Early nurturing important-avoid work over fluids, well-designed inhibition and commissioning batches
- Management of changes in production volumes and system chemistry
- Use of inhibited methanol
- Corrosion monitoring
- Effective corrosion inhibition

# Thank youQuestions?