Gas Processing Association Canada

Setting New Directions – Facing New Challenges

Alberta Saline Aquifer Project & CO₂ Slurry Pipeline

November 4, 2009

Chuck Szmurlo VP, Alternative & Emerging Technology, Enbridge Inc.

Enbridge Overview

Enbridge Inc. is a leader in energy transportation and distribution in North America

- World's longest liquids pipeline system – 2 MMB/D
- Canada's largest natural gas distribution system – 5 BCF/D
- Oil and Gas cavern storage
- Wind power projects, stationary fuel cells, CCS
- \$15 billion assets
- 6,000 employees

Alberta CO₂ Reduction Plan

Addressing CO₂ Emissions

- Capture
 - Pre combustion
 - Post combustion
 - Refinery Process
- Transportation
 - Truck
 - Rail
 - Pipeline
- Sequestration
 - Enhanced oil recovery
 - Depleted reservoirs
 - Coal seams
 - Deep saline aquifers

The ASAP Consortium (Alberta Saline Aquifer Project)

38 Participants ENBRIDGE **ENCANA EPC** R GreatPoint 🖉 НАТСН energy TTI LARICINA MEG Energy NORWEST CORPORATION

TOTAL

The ASAP Vision

Accelerate CO₂ Capture and Sequestration Infrastructure

- 1. Identify the top deep saline aquifer sequestration sites and anticipated pipeline routes to EOR projects
- 2. Establish design and cost for a large-scale sequestration project
- 3. Build and operate a large-scale pilot that leads to commercial scale sequestration of sufficient volume to address environmental targets

ASAP Phases

- 1. Design: Completed April 2009
 - Identify 6 prospective sites
 - Design and cost sequestration pilot
 - Propose regulatory template
- 2. Pilot: 2009 2015
 - Construct & operate demonstration pilot
 - 1,000 3,000 tonnes/day
- 3. Commercial: 2015 & Beyond
 - Expand to commercial operation
 - 10,000 20,000 tonnes/day

Deep Saline Aquifer Sequestration

- Numerous Alberta locations
 - Identified through 50 years of hydrocarbon exploration
 - 6 sites identified by ASAP
- Abundant capacity
 - 10 x EOR requirements
 - <u>All</u> of Canada's emissions for 800 years

• Transferable Experience

Sleipner and Snohvit

North Sea

Algerian Desert

Saline Aquifer Storage Issues

- Pore Space Ownership
 - Acid gas model
 - New crown leases
- Long-Term Liability
 - Industry during operation
 - Crown thereafter
- Public
 - Safety
 - Effectiveness

•	Cost		\$ per tonne of CO ₂
		Capture	\$25 - \$45
		Transport	\$20 - \$36
		Storage	\$15 - \$19
		Total	\$60 – \$100 / tonne

Economic Challenge for CO₂ Pipelines (ICO₂N Report)

- CO₂ capture will increase
- CO₂ EOR for demand will drop

CO, Supply & EOR Demand Potential 2012 - 2015

(Supply cost includes capture and transport)

CO₂ Volume (megatonnes per year)

Useful Work for CO₂

Food product and commercial applications

- carbonated beverages
- refrigerants, fire extinguishers

Enhanced oil recovery

- miscible flood reduces oil viscosity
- fracture fluid
- Slurry agent to transport solids via pipeline

Enbridge CO₂ Slurry Pipeline Concept

- Use CO₂ pipeline constructed for environmental purposes to transport other salable products
- Move products such as sulphur, coke and limestone from Fort McMurray to local markets and railheads
- Potential to make the CO₂ transportation more economically attractive as well as environmentally beneficial

CO₂ Slurry Pipeline Visualization

CO₂ Slurry Pipeline Basics

- A slurry pipeline uses flowing liquid (typically water) to carry entrained solids in the pipeline
- CO₂ at pressure in a pipeline flows as a liquid
- Extensive research and flow loop experiments have shown that liquid CO₂ is a more efficient carrier fluid than water
 - Less abrasive than with water -- pipeline life 2 to 3 times that with water
 - 85% coal in CO₂ slurry vs. 50% by weight with water
 - Cheaper to de-slurry (solids are delivered dry)

CO₂ Slurry Pipeline Markets

- 1. Deliver petcoke to SAGD operations and displace natural gas for steam operation
- 2. Petcoke to Ft. Saskatchewan to provide hydrogen for refineries and upgraders from coke gasifiers
- 3. Deliver petcoke/sulphur and limestone to rail junctions to access world markets

Conclusions

- Alberta will need carbon capture and sequestration to meet emissions targets
- EOR demand for CO₂ will soon be less than CO₂ supply
- Deep saline aquifers can accommodate foreseeable CO₂ values
- Significant deep saline issues including cost must be addressed
- A CO₂ slurry pipeline could create "useful work" and reduce the cost of CCS