## **GPAC/PJVA** Joint Conference

# CO<sub>2</sub> Dehydration: Why? How Much? How?

WMcKay@gasliquids.com / WMcKay@dexProDehy.com

November 10, 2011 • Telus Convention Centre • Calgary, Alberta



## Never take your eye off the target



#### Section 1

# Who Are We?

## Who?

#### **Acid Gas Injection**

- Oil & gas EPCM company formed in 1987 currently employ 250 people
- Started acid gas injection early first project was in 1995
- Worked on acid gas projects or provided training in 12 countries outside of Canada, including 6 states in the US
- Involved in about 25% of the Alberta acid gas injection projects to date
- Published 7 books and over 50 articles and technical papers relevant to acid gas and CO<sub>2</sub> behavior, facility design, and injection operational issues
- Patented a novel cost effective acid gas dehydration process

Why? How Much ? How ?

#### Section 2

# Why Dehydrate?

#### **3** Reasons

Corrosion Hydrate Formation Imposed Specs

### Corrosion





+

# = ACID !

#### Corrosion

## IT IS ALL ABOUT THE CONTAMINANTS

- carbonic, sulfuric, and nitric acids will form where CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub> are present
- excess oxygen allows the corrosion to continue
- most likely cause of off-spec water content is carry over of water/glycol from the dehydration process
- stainless steel piping alternative is ~4-5 times more expensive than mild steel

| Table 6-9<br>Corrosion of Mild Steel by Carbon Dioxide and Other Gases in Water* |     |                                                                                                         |    |  |  |  |
|----------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|----|--|--|--|
| Gas Concentration, ppm                                                           |     | Corrosion of Mild Steel, mils/year<br>A: CO <sub>2</sub> conc. 200 ppm B: CO <sub>2</sub> conc. 600 ppm |    |  |  |  |
| <u> </u>                                                                         |     | 20                                                                                                      |    |  |  |  |
| 8.8                                                                              | 0   | 28                                                                                                      | 60 |  |  |  |
| 4.3                                                                              | 0   | 18                                                                                                      | 44 |  |  |  |
| 1.6                                                                              | 0   | 12                                                                                                      | 34 |  |  |  |
| 0.4                                                                              | 0   | 17                                                                                                      | 27 |  |  |  |
| < 0.5                                                                            | 35  | 6                                                                                                       | 6  |  |  |  |
| <0.5                                                                             | 150 | 15                                                                                                      | 16 |  |  |  |
| < 0.5                                                                            | 400 | 17                                                                                                      | 21 |  |  |  |



\*Temperature 80°F, exposure time 72 hr.

Source: Data of Watkins and Kincheloe (1958) and Watkins and Wright (1953)

#### Gas Purification, 5<sup>th</sup> edition

#### **Hydrates**

#### Definition

A physical combination of water and small molecules producing a crystalline compound having "ice like" appearance but possessing different properties and structure than ice.

#### Problem

At some temperature, above the freezing point of water, the water and acid gas will begin to form a solid called a hydrate.

The Hydrate Formation Temperature and varies according to the pressure, gas composition, and water content of the vapour.

Hydrates cause reduced heat transfer, excess pressure drops, blockages, and safety concerns.





#### **Hydrate Formation**



#### **Pipeline Spec**

 CO<sub>2</sub> pipeline operators impose minimum quality requirements for corrosion control and hydrate prevention

#### Kinder Morgan CO<sub>2</sub> Pipeline Spec (June 5, 2008)

| <u>Component</u> | <u>Standard</u>                                                                                                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purity           | 95% mole percent of Carbon Dioxide                                                                                                                                                                 |
| Water            | no free water, not more than thirty (30) pounds of water per MMscf in the vapor phase                                                                                                              |
| Oxygen           | not more than ten (10) parts per million, by weight, of oxygen                                                                                                                                     |
| Hydrogen Sulfide | not more than twenty (20) parts per million, by weight, of hydrogen sulfide                                                                                                                        |
| Total Sulfur     | not more than thirty-five (35) parts per million, by weight, of total sulfur                                                                                                                       |
| Nitrogen         | not more than four mole percent (4%) of nitrogen                                                                                                                                                   |
| Temperature      | not exceed a temperature of 120°F                                                                                                                                                                  |
| Hydrocarbons     | not more than five mole percent (5%) of hydrocarbons; dew point not higher than -20°F                                                                                                              |
| Other            | not contain more than 0.3 (three tenths) gallons of glycol per MMcf and at no time shall<br>such glycol be present in a liquid state at the pressure and temperature conditions of the<br>pipeline |

#### **Pipeline Spec**

#### DNV-RP-J202 - "Design and Operation of CO<sub>2</sub> Pipelines" (April 2010)

- 4.8.3 Limitations on water content
  - "... ensure that no free water may occur at any location in the pipeline within the operational and potential upset envelopes and modes, unless corrosion damage is avoided through material selection."
    - normal operation pressure and temperature envelope
      - safety factor of 2 is recommended
    - shut-in pressure combined with minimum ambient temperature
    - depressurization scenario
      - water dropout cannot be prevented without very stringent limits

# Water content spec needs to be established according to the local transportation conditions

- Piping across the plant site might only require 75 lb/MMscf (1,580 ppm<sub>v</sub>)
- Above ground piping in Arctic permafrost may require 12 lb/MMscf (252 ppm<sub>v</sub>)

#### **Section 3**

# How Much Dehydration ?

## How Much?

#### **Acid Gas Phase Envelopes**



## How Much?

#### Water Content - AQUAlibrium



## How Much?

#### Water Content - AQUAlibrium



#### **Section 4**

# How to Dehydrate ?

#### Methods

#### Compression

Water content in vapour is reduced as pressure is increased

#### Desiccant

- Absorption
  - solid calcium chloride
  - liquid glycerin, glycols (TEG)
- Adsorption gels, alumina, molecular sieve

#### **Refrigeration – thermodynamic phase separation**

- External (closed)
  - A/C, car, refrigerator, arena, gas plant liquids recovery
- Internal (auto-refrigeration)
  - Choke plant dew point control
  - DexPro<sup>™</sup> (patented)

#### Separation – 'mechanical' membrane permeation

#### Compression



#### Absorption

#### Simplified process overview - glycol

- CO<sub>2</sub> flows from the bottom up through a contactor
- 'dry' glycol flows from the top down through the contactor
- glycol absorbs water from the CO<sub>2</sub> as it flows through the glycol
- water, and other absorbed contaminants, are boiled out of the 'wet' glycol in a reboiler
- HIGH PRESSURE LOW PRESSURE REGENERATION SYSTEM CONTACTING SYSTEM VAPOR OUTLET (TCV)  $\Rightarrow$  (OPTIONAL) REFLUX GAS (LCV) SKIMMER SURGE (OPTIONAL) (LC) FUEL 10) ¥ (10) GAS INLET SCRUB-GAS/GLYCOL GLYCOL/GLYCOL HEAT EXCHANGER BER HEAT CONTACTOR SOCK CHANGE FILTER FILTER (OPTIONAL) TOWER CONDENSATE TO FREE DRY DRAIN LIQUID GAS OUTLET WET GAS INLET GLYCOL CIRCULATION PUMP
- 'dry' glycol is recycled back to the contactor

## Absorption



#### **Adsorption**

#### Simplified process description - Molecular Sieve

- 'wet' CO<sub>2</sub> is dehydrated in one tower while the other tower is regenerating
- gas is heated up to 315 degC and reversed to regenerate the tower



## Adsorption





#### **Refrigeration - external**

#### Simplified process description

- Condenser
  - refrigerant is condensed to liquid

#### Expansion

- liquid refrigerant is expanded across a JT valve to desired temperature
- Evaporator (chiller)
  - cold refrigerant absorbs heat from CO<sub>2</sub> and evaporates refrigerant
- Compressor
  - refrigerant vapour is recompressed to desired cycle pressure and returned to condenser



#### DexPro™

#### Simplified process description - DexPro™

- TCV or JTV (Joule-Thomson Valve)
  - Cools a small slip stream of Dry acid gas by reducing the pressure (expansion)
- DexPro<sup>™</sup> Module
  - Cold Dry Acid Gas mixes with Wet acid gas in the DexPro Module
- Stage 5 Suction Scrubber/Compressor/Cooler
  - Condensed water from the DexPro Module is removed in suction scrubber
  - Cool Dry acid gas increases fluid compression efficiency













#### **Section 5**

# How do they Compare ?

#### **Glycol & Molecular Sieve Dehydration – 49<sup>o</sup>C**



#### **Refrigeration & DexPro™ – 49<sup>o</sup>C**



#### **Compressor Performance vs. Inlet Temperature**



#### **Example Case**

- 1,000 tonne/day  $\rightarrow$  538,300 Sm<sup>3</sup>/d of dry CO<sub>2</sub>
- water saturated at 48°C @ 40 kPa(g)
- pipeline inlet design pressure  $\rightarrow$  13,800 kPa(g)
- 4 compression (centrifugal) stages
- inter-stage / after-cooling between compressor stages
  - 40°C process (CO<sub>2</sub>)
- 632 ppm<sub>v</sub> dehydration requirement (30 lb/MMscf)
  - ~-20°C hydrate formation temperature

#### Process

|                         |                 |                   | No          | Triethylene | External      | D Due IM |              |
|-------------------------|-----------------|-------------------|-------------|-------------|---------------|----------|--------------|
|                         |                 |                   | Dehydration | Glycol      | Refrigeration | DexPro™  |              |
| Compression             | main            | hp <sub>gas</sub> | 5,469.9     | 5,494.0     | 5,256.8       | 5,539.0  |              |
|                         | refrigeration   | hp <sub>gas</sub> |             |             | 163.3         |          |              |
|                         |                 | total             | 5,469.9     | 5,494.0     | 5,420.1       | 5,539.0  |              |
|                         |                 |                   |             | 0.44%       | -0.91%        | 1.26%    | Horsepower   |
| Cooling Water           | main            | gpm <sub>US</sub> | 1,441       | 1,446       | 1,340         | 1,447    |              |
|                         | condenser       | gpm <sub>US</sub> |             |             | 94            |          |              |
|                         |                 | total             | 1,441.0     | 1,446.0     | 1,434.0       | 1,447.0  | Cooling      |
|                         |                 |                   |             | 0.35%       | -0.49%        | 0.42%    | Cooning      |
| Heat                    | regenerator     | btu/hr            |             | 80,257      |               |          | Regeneration |
| <b>Regenerator Vent</b> | CO <sub>2</sub> | t/yr              |             | 135.2       |               |          |              |
|                         | Water           | t/yr              |             | 280.6       |               |          | Still Vent   |
|                         | Glycol          | lb/yr             |             | 41.0        |               |          |              |
| Glycol losses           | pipeline        | lb/yr             |             | 17,788.9    |               |          | TEG lossos   |
|                         | vent            | lb/yr             |             | 41.0        |               |          | TEGIOSSES    |
| Methanol losses         | pipeline        | lb/hr             |             |             | 23.2          |          |              |
|                         |                 | bbl/d             |             |             | 2.0           |          | Weon iosses  |

Size

| TEG Deh                     | y l         | DexPro™                     | n      |             |
|-----------------------------|-------------|-----------------------------|--------|-------------|
|                             | ,<br>Weight |                             | Weight |             |
| 30" Contactor               | 6,500       | DexPro™ Module              | 350    |             |
| Still Column                | 200         | Regulators                  | 10     |             |
| Vent                        | 200         | Analyzer                    | 75     |             |
| Flash Tank                  | 500         | <b>Control Panel</b>        | 65     |             |
| Reboiler/Surge              | 1,000       | Pump/motor                  | 50     |             |
| Piping                      | 1,450       | Frame                       | 75     |             |
| Skid                        | 1,700       | Instruments                 | 50     |             |
| Wiring                      | 200         | Wiring                      | 200    |             |
| Glycol                      | 3,000       |                             |        |             |
| miscellaneous               | 250         | miscellaneous               | 125    |             |
| Total (kg.) 15,000          |             | Total (kg.) 1,00            |        |             |
| tonne                       | 15.0        | tonne                       | 1.0    | Lowest Weig |
|                             | Size        |                             | Size   |             |
| Height                      | 9.2 m.      | Height                      | 1.8 m. |             |
| Length                      | 4.3 m.      | Length                      | 1.8 m. |             |
| Width                       | 2.4 m.      | Width                       | 0.6 m. |             |
| Footprint (m <sup>2</sup> ) | 10.3        | Footprint (m <sup>2</sup> ) | 1.1    | Lowest Area |

#### Economics

|                                 |            | No            | Triethylene  | External      | DevPro™      |              |
|---------------------------------|------------|---------------|--------------|---------------|--------------|--------------|
|                                 |            | Dehydration   | Glycol       | Refrigeration | DEXITO       |              |
| Dehydration Capital Cost        | installed  | \$ -          | \$ 2,100,000 | \$ 1,350,000  | \$ 600,000   | Lowest CAPEX |
|                                 |            |               |              |               |              |              |
| Annual Operating Cost           |            |               |              |               |              |              |
| Compression                     | \$70/MWhr  | \$ 2,502,206  | \$ 2,513,218 | \$ 2,479,409  | \$ 2,533,788 |              |
| Triethylene Glycol              | \$1.00/lb  | \$ -          | \$ 843       | \$-           | \$-          |              |
| Methanol                        | \$0.25/lb  | \$ -          | \$-          | \$ 50,812     | \$-          |              |
| Annual Maintenance Cost         |            |               | \$ 210,000   | \$ 135,000    | \$ 6,000     | 4            |
| Total Annual Cost               |            | \$ 2,502,206  | \$ 2,724,061 | \$ 2,665,221  | \$ 2,539,788 | Lowest OPEX  |
|                                 |            |               |              |               |              |              |
| Present Value of Operating Cost |            | \$ 26,508,403 | \$28,858,740 | \$28,235,388  | \$26,906,550 |              |
| discount rate                   | 7%         |               |              |               |              |              |
| term (years)                    | 20         |               |              |               |              |              |
|                                 | TOTAL NPV  | \$ 26,508,403 | \$30,958,740 | \$29,585,388  | \$27,506,550 |              |
|                                 |            |               |              |               |              |              |
|                                 | difference | \$ -          | \$ 4,450,337 | \$ 3,076,986  | \$ 998,147   | Best NPV     |

♣ DexPro<sup>™</sup> capital cost does not reflect one time license fee

#### DexPro™

#### **DexPro™** has a number of key advantages

- Lowest capital cost (CAPEX)
- Lowest operating cost (OPEX)
- Best economics (NPV)
- No rotating equipment
- Simplicity of process and equipment
- Extreme turndown
- No fugitive emissions or off-gas handling requirement
- Very small environmental footprint
- Very small physical footprint

# **QUESTIONS ?**

Wayne McKay, P.Eng. <u>WMcKay@gasliquids.com</u> / <u>WMcKay@dexProDehy.com</u> www.gasliquids.com / www.DexProDehy.com

